If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5u^2+35=95
We move all terms to the left:
5u^2+35-(95)=0
We add all the numbers together, and all the variables
5u^2-60=0
a = 5; b = 0; c = -60;
Δ = b2-4ac
Δ = 02-4·5·(-60)
Δ = 1200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1200}=\sqrt{400*3}=\sqrt{400}*\sqrt{3}=20\sqrt{3}$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-20\sqrt{3}}{2*5}=\frac{0-20\sqrt{3}}{10} =-\frac{20\sqrt{3}}{10} =-2\sqrt{3} $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+20\sqrt{3}}{2*5}=\frac{0+20\sqrt{3}}{10} =\frac{20\sqrt{3}}{10} =2\sqrt{3} $
| 3a-a=25 | | 0.4^(x)-0.1=0.3 | | (0.2x-1.1)/5=5 | | (2.2x+2.2)/4=1.1 | | 4x^2+54x+110=4x^2 | | 2.1295=0.014X^2-0.3748x+3.2463 | | Y=41x-3 | | 6d−2=2d−213 | | 4(-6x-2)=16x | | 3/19=z/779 | | 88/6.5=132/g | | 10q=100,000q= | | (x-18)+(2x-4)+92=382 | | 1.8/1=x/250 | | 256.25=x+8x | | 8(3w+10)/3=7 | | 69=21x | | 40/100=n/285 | | 69=×+x | | 3x-17=40(x+40) | | 378/13.5=g/138 | | -5+2(x-3)=-(1+8x)=5x | | n/7=0/35 | | 89=14x+1+5x+7 | | 89=14x+1+5x=7 | | 7(4s+2)=98 | | 14x+1+89+5x=7 | | 225=3.14*10^2*h | | 2/y=y/7y-24 | | x=3x^2-18x+26 | | -33+8x=-3(3x+6)=2 | | 34/x=5-1/x |